Candidate's Name :		
Enrolment No. :	Signature of Invigilator:	
-	- invigilator.	596374

JEM-2008

(Do not open this MCO BOOKLET until you are asked to do so)

Subject: PHYSICS AND CHEMISTRY

Maximum Marks: 80 (Each question carries equal mark.)

IMPORTANT INSTRUCTIONS

Candidates should read the following instructions carefully and fill in all the required particulars before answering the questions:

- (1) The Question Booklet with 16 pages has been sealed. Candidates should open the Question Booklet only when they are asked to do so by the Invigilator.
- (2) The candidates must check that the Question Booklet has 80 questions with multiple choice answers immediately after opening the seal. Each MCQ carries *one* mark.
- (3) Answers will have to be given on the OMR Answer Sheet supplied for this purpose. Question numbers progress from 1 to 80 with options shown as (A), (B), (C) and (D).
- (4) OMR Answer Sheets will be processed by electronic means. Hence, invalidation of Answer Sheet resulting due to folding or putting stray marks on it or any damage to the Answer Sheet as well as incomplete/incorrect filling of the Answer Sheet, will be the sole responsibility of the Candidate.
- (5) Use Black Ball Pen to mark your answers.
- (6) While answering, choose only the Correct/Best option from the four choices given in the question and mark the same in the corresponding circle in the Answer Sheet only. Answers without any response shall be awarded zero mark. Wrong response or more than one response shall be treated as incorrect answer. For every incorrect answer one-third (1/3) mark of that Question will be deducted.
- (7) Darken with Black Ball Pen completely only one option which you think correct as shown in the figure below:

CORRECT METHOD	WRONG METHOD
0000	$ \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc \bigcirc$

- (8) Mark the answers only in the space provided. Please do not make any stray marks on the Answer Sheet.
- (9) Rough work may be done on the space provided in the Question Booklet.
- (10) Please hand over the OMR Answer Sheet to the Invigilator before leaving the Examination Hall.

PHYSICS

A beaker of radius 15 cm is filled with a liquid of surface tension 0.075 N/m. Force across an imaginary diameter on the surface of the liquid is

(A) 0.075 N

(B) $1.5 \times 10^{-2} \text{ N}$

(C) .225 N

(D) 2.25×10^{-2} N

Two springs are joined & attached to a mass of 16 kg. The system is then suspended vertically from a rigid support. The spring constants of the two springs are - K₁ & K₂ respectively. The period of vertical oscillations of the system will be -

(B) $8\pi \sqrt{\frac{K_1 + K_2}{K_1 K_2}}$

3. The equation of a progressive wave can be given by

 $Y = 15 \sin (660 \pi t - 0.02 \pi x)$ cm. The frequency of the wave is

(A) 330 Hz

(B) 342 Hz

(C) 365 Hz

(D) 660 Hz

4. A hollow cylinder with both side open generates a frequency 'f in air. When the cylinder vertically immersed into water by half its length the frequency will be

(A) 'f'

5. Two stretched strings has lengths 'l' and '2l' while tensions are 'T' and '4T' respectively. If they are made of same material the ratio of their frequency is

(A) 2:1

(B) 1:2 (C) 1:1

(D) 1:4

6. When sound is produced in an Aeroplane moving with a velocity of 200 m/sec horizontally its echo is heard after $10\sqrt{5}$ seconds. If velocity of sound in air is 300 m/sec the elevation of the aircraft is

(A) 250 m

(B) $250 \sqrt{5} \text{ m}$

(C) 1250 m

(D) 2500 m

Two tuning forks of frequencies n₁ and n₂ produces n beats per second. If n₂ and n are known, n₁ may be given by

(A) $\frac{n_2}{n} + n_2$

(C) $n_2 \pm n$

8. A car moving with a velocity of 36 km/hr crosses a siren of frequency 500 Hz. The apparent frequency of the siren after passing it will be

(A) 520 Hz

(B) 485 Hz

(C) 540 Hz

(D) 460 Hz

9. Six molecules have speeds 2 units, 5 units, 3 units, 6 units, 3 units and 5 units respectively. The rms speed is—

(A) 4.0 units

(B) 1.7 units

(C) 4.2 units

1

(D) 5.0 units

Which one of the figures gives the temperature dependence of density of water correctly?

11,	A bullet emerges fro accelaration, the appro (A) 4 ms	om a barrel of length oximate time that it spen (B) 40 ms	1.2 m with a speed ands in the barrel after (C) 400 μs	of 640 m/s. Assuming constant the gun is fired is — (D) Is	
12.	A body of mass 3 kg	acted upon by a constan	nt force is displaced t	by 's' meter, given by the relation	
	$s = \frac{1}{3}t^2$, where t is in :	second. Work done by the	he force in 2 seconds	is	
	(A) $\frac{8}{3}$ J	(B) $\frac{19}{5}$ J	(C) $\frac{5}{19}$ J	(D) $\frac{3}{8}$ J	
13.		2.75 eV. How many dif		ground state of a H-atom absorbs an one expect when the electron	
	(A) 1	(B) 4	(C) 2	(D) 6	
14.	A piece of wood is flowood will	oating in water. When the	e temperature of wate	r rises, the apparent weight of the	
	(A) increase		(B) decrease		
	(C) may increase or d	lecrease	(D) remain same		
15.				om 0°C to 100°C and another 55 latent heat of vaporization comes	
	(A) 530 cal/gm	(B) 540 cal/gm	(C) 550 cal/gm	(D) 560 cal/gm	
16.	Which of the following (A) Steel	ng substances has the hig (B) Copper	ghest elasticity? (C) Rubber	(D) Sponge	
17.	A wire is stretched und (A) remains the same (C) increases	der a force. If the wire su e (B) decreases (D) first decreases and		perature of the wire	
18.	When the room tempe (A) 100%	erature becomes equal to (B) Zero%	the dew-point, the rel (C) 70%	lative humidity of the room is (D) 85%	
19.	At what temperature v (A) 519°C	will the rms speed of air (B) 619°C	molecules be double t (C) 719°C	hat at NTP? (D) 819°C	
20.		s of glass and quartz wit	th respect to air are $\frac{3}{2}$	and $\frac{12}{5}$ respectively. The r.i. of	
	quartz w.r.t glass is	5	5	10	
	(A) $\frac{8}{5}$	(B) $\frac{5}{8}$	(C) $\frac{3}{18}$	(D) $\frac{18}{5}$	
21.	The radius of curvatur object distance is	re of a concave mirror is	24cm and the image i	is magnified by 1.5 times. The	
	(A) 20 cm	(B) 8 cm	(C) 16 cm	(D) 24 cm	
22.	surface of water throu	igh which light emits is		he radius of the circle at the	
	(A) $\frac{3}{\sqrt{7}}$ h	(B) $\frac{\sqrt{7}}{3}$ h	(C) $\frac{\sqrt{3}}{7}$ h	(D) $\frac{7}{\sqrt{3}}$ h	
23.	Four point charges eac	ch '+a' is placed on the ci	renmference of a circl	e of diameter 2d in such a way	9

that they form a square. The potential at the centre is

(A) 0

					Rou	igh Work	
24.	64 identical spheres of charge and capacitance of	of the large sphere is			e. The		
	(A) 64q, C	(B) 16q, 4C	(C) 64q, 4C	(D) 16q, 64C			
25.	Lenz's law of electromag (A) the law of conserve (B) the law of conserve (C) the law of conserve (D) the law of conserve	ation of charge ation of energy ation of momentum				and the same of th	
26.	Which of the following (A) The rest mass of	a stable nucleus is le	ss man the sum of	of the rest masses of it	s separated		
	nucleons. (B) The rest mass of nucleons.			· ·			
	nucleons. (C) In nuclear fusion, amu) (D) In nuclear fission,				imatery 100		
27,	A silicon and a german than that in germanium (A) The reverse curre (B) The reverse curre	. An identical reverse r nt in germanium is larg nt in silicon is larger th	er than that in silic an that in germani	on.	con is larger		
	(C) The reverse curren	nts are identical in the t	wo moues.	ermined from the given	data only.		
28.	(A) 4Ω	(B) 2Ω	(C) 112	nce across any diameter (D) 8Ω			
29.	A battery of emf E and for maximum power to	l internal resistance 'r' i	s connected to an e	xternal resistance 'R', th	e condition	5	
	(A) $r < R$	(B) r > R	(C) $r = \frac{1}{R}$	(D) $r = R$			
		111 is somired and to the	decimal number				
30.	The binary number 10	111 is equivalent to the (B) 31	(C) 23	(D) 22			
	(A) 19						
31	The angle subtended b	by the vector $A = 4\hat{i} + \hat{i}$	$3\hat{j} + 12\hat{k}$ with the	x-axis is			
	(A) $\operatorname{Sin}^{-1}\left(\frac{3}{13}\right)$	(B) $\operatorname{Sin}^{-1}\left(\frac{4}{13}\right)$					
	(C) $Cos^{-1}\left(\frac{4}{13}\right)$	(D) $Cos^{-1}\left(\frac{3}{13}\right)$					
32	(Δ) 1.	(B) LT	(C) LI	+ bt ² , the dimension of (D) LT ⁻³			
22	The distance travelle	d by an object along a	straight line in tin	ne 't' is given by $S = 3$	$-4t + 5t^2$, the		
33	initial velocity of the (A) 3 unit	object is (B) -3 unit	(C) 4 unit	(D) -4 unit			
	(A) J will		angular velocity (of 1 rad/s along a circl	e of radius 'l'		
34	meter, the centrifuga	gm is moving with an large force is (B) 1 dyne	(C) 10 dyne	(D) 100 dyne			>
	(A) 0.1 dyne			17	ant the contra		
3:	of gravity is at a dist (A) 10 cm	f mass 1.5 gm and 2.5 tance 'x' from the object (B) 6 cm	gm respectively ar it of mass 1.5 gm v (C) 13 cm	e at a distance 16 cm ap where 'x' is (D) 3 cm	oart, the centre		

	original value then on (A) 96 hrs	e complete day will	oes not change but rad take. (C) 6 hrs	lius decreases to one quarter of its (D) 1.5 hrs	
	()	(2) 10 110	. (C) 0143	(D) 1.5 ms	A 11
37:	parts of mass 9 kg and	d 1 kg respectively.	a velocity of 10 Meter If the 1st mass is statio (C) 100 m/s		
38.	and $g = 9.8 \text{ m/s}^2$) is			gh plane (coefficient of friction 0.1	
	(A) 0.98 N	(B) 0.49 N	(C) 9.8 N	(D) 4.9 N	
39.	A rocket of mass 100 then it lifts with an ac	kg burns 0.1 Kg o	f fuel per second. If ve	elocity of exhaust gas is 1 Km/Sec	
	(A) 1000 m/s^2	(B) 100 m/s ²	(C) 10 m/s ²	(D) 1 m/s ²	
40.	The weight of a body radius of the earth its	on the surface of th		n it is elevated to a height half the	
	(A) 2.8 N	(B) 5.6 N	(C) 12.6 N	(D) 25.2 N	
					25.5
				agarag je	
	0.00	Сн	EMISTRY		
41.	2N HCl solution will I (A) 4.0 N H ₂ SO ₄			4 (D) 2.0 N H ₂ SO ₄	
	2 - 4	(D) 0.5 N H25O4	-		
42.		nine on reaction with	h nitrous acid gives at N (B) 22.4 litres of (D) 5.6 litres of the	nitrogen	
42. 43.	One mole of methylan (A) 1.0 litre of nitrog (C) 11.2 litres of nitr Addition of sodium ac (A) increase of pH	nine on reaction with gen ogen etate to 0.1M acetic (B) decrease of ph	h nitrous acid gives at N (B) 22.4 litres of (D) 5.6 litres of acid will cause	nitrogen nitrogen	
	One mole of methylan (A) 1.0 litre of nitrog (C) 11.2 litres of nitr Addition of sodium ac (A) increase of pH	nine on reaction with gen ogen etate to 0.1M acetic (B) decrease of ph	h nitrous acid gives at N (B) 22.4 litres of (D) 5.6 litres of acid will cause	nitrogen nitrogen	
	One mole of methylan (A) 1.0 litre of nitrog (C) 11.2 litres of nitr Addition of sodium ac (A) increase of pH	nine on reaction with gen ogen etate to 0.1M acetic (B) decrease of ph (D) change in pH	h nitrous acid gives at N (B) 22.4 litres of (D) 5.6 litres of n acid will cause 4 that cannot be predicted s ² 3p ⁶ 3d ⁹ represents a	nitrogen nitrogen	
43.	One mole of methylan (A) 1.0 litre of nitrog (C) 11.2 litres of nitr Addition of sodium ac (A) increase of pH (C) no change in pH The electronic configu (A) Metal atom Unusually high boiling	nine on reaction with ten ogen etate to 0.1M acetic; (B) decrease of pl- (D) change in pH tration 1s ² 2s ² 2p ⁶ 3s (B) Non metal atog point of water is the	h nitrous acid gives at N (B) 22.4 litres of (D) 5.6 litres of acid will cause I that cannot be predicted s ² 3p ⁶ 3d ⁹ represents a om (C) Non metallic	nitrogen nitrogen	
43.	One mole of methylan (A) 1.0 litre of nitrog (C) 11.2 litres of nitr Addition of sodium ac (A) increase of pH (C) no change in pH The electronic configu (A) Metal atom	nine on reaction with ten ogen etate to 0.1M acetic: (B) decrease of ph (D) change in ph tration 1s ² 2s ² 2p ⁶ 3s (B) Non metal ator g point of water is the drogen bonding ra-molecular hydrogen drogen bonding	h nitrous acid gives at N (B) 22.4 litres of (D) 5.6 litres of n acid will cause I that cannot be predicted s ² 3p ⁶ 3d ⁹ represents a om (C) Non metallicular result of	nitrogen nitrogen	
43.	One mole of methylan (A) 1.0 litre of nitrog (C) 11.2 litres of nitr Addition of sodium ac (A) increase of pH (C) no change in pH The electronic configu (A) Metal atom Unusually high boiling (A) Intermolecular hy (B) Both inter-and int (C) Intramolecular hy	nine on reaction with ten ogen etate to 0.1M acetic; (B) decrease of pl- (D) change in pH tration 1s ² 2s ² 2p ⁶ 3s (B) Non metal atout the drogen bonding tra-molecular hydrogen bonding tra-molecular hydrogen bonding	h nitrous acid gives at N (B) 22.4 litres of (D) 5.6 litres of n acid will cause I that cannot be predicted s² 3p6 3d9 represents a com (C) Non metallicular result of en bonding 'd(B)' is equal to	nitrogen nitrogen anion (D) Metallic cation	
43. 44. 45.	One mole of methylan (A) 1.0 litre of nitrog (C) 11.2 litres of nitr Addition of sodium ac (A) increase of pH (C) no change in pH The electronic configu (A) Metal atom Unusually high boiling (A) Intermolecular hy (B) Both inter-and int (C) Intramolecular hy (D) High specific hea	nine on reaction with ten ogen etate to 0.1M acetic; (B) decrease of pl- (D) change in pH tration 1s ² 2s ² 2p ⁶ 3s (B) Non metal atout the drogen bonding tra-molecular hydrogen bonding tra-molecular hydrogen bonding	h nitrous acid gives at N (B) 22.4 litres of (D) 5.6 litres of n acid will cause I that cannot be predicted s² 3p6 3d9 represents a com (C) Non metallicular result of en bonding 'd(B)' is equal to	nitrogen nitrogen	

	PRO A Light -	Rough Work
47.	In a given shell, the order of screening effect is (A) $f > d > p > s$ (B) $s > p > d > f$ (C) $f > p > s > d$ (D) $p < d < s < f$	01 10 1
48.	A catalyst is a substance which (A) Increases the equilibrium constant of the reaction (B) Increases the equilibrium concentration of products (C) Does not alter the reaction mechanism (D) Changes the activation energy of the reaction	
	The state of the s	THE PERSON
49.	Which of the following expressions gives the de Broglie relationship?	
	(A) $p = \frac{h}{mv}$ (B) $\lambda = \frac{h}{mv}$ (C) $\lambda = \frac{h}{mp}$ (D) $\lambda m = \frac{v}{p}$	
50.	The bond order in O ₂ ion is	
50.	The bond order in O_2 ton is (A) 2 (B) 1 (C) 2.5 (D) 1.5	
51.	The R.M.S. velocity of an ideal gas at constant pressure varies with density(d) as	
J1.	(A) $\frac{1}{\sqrt{d}}$ (B) d (C) \sqrt{d} (D) d^2	
52.	Solubility product of magnesium hydroxide at ordinary temperature is 1.96×10 ⁻¹¹ . pH of a saturated solution of magnessium hydroxide will be (A) 10.53 (B) 8.47 (C) 6.94 (D) 3.47	Anne i Anne i Anne i
53.	If the volume of the vessel in which the reaction, $2NO(g)+O_2(g)=2NO_2(g)$ is occurring, is diminished to one third of its initial volume, the rate of the reaction will be increased by (here, $g = gas$) (A) 3 times (B) 9 times (C) 27 times (D) 36 times	
54.	Without performing any calculation indicate the process from the following list for which change of entropy will be positive	
	(A) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	
	(B) $HCI(g) + NH_{g}(g) \longrightarrow NH_{g}(g)$	
	(C) $NH_4NO_3(s) = N_2O(g) + 2H_2O(g)$	
	(D) $MgO(s) + H_2(g) = Mg(s) + H_2O(l)$ (s = solid, l = liquid, g = gas)	
55.	The product P of the nuclear reaction ${}^{235}_{92}U + {}^{1}_{0}n \longrightarrow P + {}^{92}_{36}Kr + 3 {}^{1}_{0}n$ is (A) ${}^{141}_{56}Sr$ (B) ${}^{141}_{56}La$ (C) ${}^{141}_{56}Ba$ (D) ${}^{141}_{56}Cs$	
56.	11 0 0 T GC 1 0 O 1 1 1 N GC 1 a lating The frequing	
57.	Which one of the following gives on ozonolysis both aldehyde and ketone: (A) Me ₂ C = CHMe (B) Me ₂ C = CMe ₂ (C) MeCH ₂ -C(Me) = CMe ₂ (D) MeCH(Me)-CH = CHMe	
58;	Benzoylation of phenol in alkaline medium is known as	

(B) Wurtz-Fittig reaction
(D) Sabatier-Sandern's reaction

(A) Friedel Craft reaction (C) Schotten-Baumann reaction

- Which one of the following compounds is most reactive towards nucleophilic addition? CH₃CHO, PhCOCH₃,
 - (A)
- (B)
- PhCOPh, (C)
- CH3COCH3 (D)
- Distillation of acetone with concentrated H₂SO₄ gives
 - (A) diacetone alcohol (B) mesityl oxide
- (C) mesitylene
- (D) Propene-2-ol
- RCH₂CH₂OH can be converted into RCH₂CH₂COOH by the following sequence of steps: 61.
 - (A) PBr₃, KCN, H₃O⁺

(B) PBr₃, KCN, H₂/Pt

(C) KCN, H₃O+

- (D) HCN, PBr3, H3O+
- The major product 'P' in the following reaction is

$$CH_3CH = CH_2 \xrightarrow{HI} P$$

(A) CH₃ CH₂ CH₂ I

(B) CH₃ CH—CH₃

- (C) CH_2 — $CH = CH_2$
- 63. Formation of cyanohydrin from a ketone is an example of
 - (A) Electrophilic addition

(B) Nucleophilic substitution

- (C) Nucleophilic addition
- (D) Electrophilic substitution
- 64. Which of the following will exhibit cis trans isomerism?
 - (A) CH_2Br — CH_2Br (B) CBr_3 — CH_3
- (C) CHBr = CHBr (D) $CBr_2 = CH_2$
- How many primary amines are possible with the formula C₄H₁₁N?
- (B) 2
- (C) 3
- (D) 4

- The IUPAC name of CH_1 — $CH = CH_1$ $= CH_2$ $= CH_3$ is
 - (A) Pent -3 en 1 vne
- (B) Pent -3 en 4 yne
- (C) Pent -2 en 4 yne
- (D) Pent 2 en 3 vne
- A tripeptide is written as Glycine-Alanine-Glycine. The correct structure of the tripeptide is
- CH,
- Ö CH.
- CH,
- Which of the following will produce only one product upon reduction with LiAlH₄?
 - (A) CH₃ OCOCH₂ CH₃

(B) CH₃ CH₂O COCH₂ CH₃

(C) CH₃CH₂OCOCH₃

(D) CH₃ CH₂O COCH₂ CH₂CH₃

69.	Which pair of the following gives effervescence with aq. NaHCO ₃ ?
	CH ₃ COCl, CH ₃ COCH ₃ , CH ₃ COOCOCH ₃
	I II II IV
	(A) I and II (B) I and IV (C) II and III (D) I and III
70.	Which of the following acids has the smallest dissociation constant?
	(A) CH ₃ CHF. CO ₂ H (B) FCH ₂ CO ₂ H
	(C) BrCH ₂ CO ₂ H (D) CH ₃ CHBr.CO ₂ H
71.	Which one of the following pairs is obtained on heating ammonium dichromate?
71.	(A) N ₂ and H ₂ O (B) N ₂ O and H ₂ O
	(C) NO ₂ and H ₂ O (D) NO and NO ₂
	and the second s
72.	Which one of the following processes is used for the manufacture of calcium?
	(A) Reduction of CaO with carbon
	(B) Reduction of CaO with hydrogen (C) Floaten having of a minutum of anhudrous CaCl, and KCl.
	(C) Electrolysis of a mixture of anhydrous CaCl ₂ and KCl (D) Electrolysis of molten Ca(OH) ₂
	(D) Electrolysis of monen ca(O11)2
73.	Composition of azurite mineral is
	(A) $CuCO_3$. CuO (B) $Cu(HCO_3)_2$. $Cu(OH)_2$
	(C) $2CuCO_3.Cu(OH)_2$ (D) $CuCO_3.2Cu(OH)_2$
7.4	When KI is added to an acidified solution of sodium nitrite
74.	(A) NO gas is liberated and l ₂ is set free (B) N ₂ gas is liberated and HI is produced
	(C) N ₂ O gas is liberated and l ₂ is set free (D) N ₂ gas is liberated and HOI is produced
	(C) 1120 gas is interacted and 12 is set free (D) 112 gas is not and 1101 is produced
75.	Fe(OH) ₃ can be separated from Al(OH) ₃ by the addition of
	(A) NaCl solution (B) dil. HCl solution
	(C) NaOH solution (D) NH ₄ Cl and NH ₄ OH
76.	Select the incorrect statement from the following:
70.	(A) Ozone is used as germicide for the purification of air
	(B) In ozone oxygen-oxygen bond length is identical with that of molecular oxygen
	(C) Ozone molecule is angular in shape
	(D) Ozone is an oxidising agent
77.	The brown complex obtained in the detection of nitrate radical is formulated as [Fe(H ₂ O) ₅ NO]SO ₄ .
11.	What is the oxidation number of Fe in this complex?
	(A) +1 (B) +2 (C) +3 (D) 0
	and the state of t
78:	Sodium nitrate on reduction with Zn in presence of NaOH solution, produces ammonia. Mass of sodium nitrate absorbing one mole of electron will be
	(A) 7.750 g (B) 10.625 g (C) 8.000 g (D) 9.875 g
79.	In transforming 0.01 mol of PbS to PbSO ₄ , the volume of "10-volume" hydrogen peroxide required
	will be
	(A) 11.2 ml. (B) 22.4 ml. (C) 33.6 ml. (D) 44.8 ml.
80.	An unknown element forms an oxide. What will be the equivalent weight of the element if the
	oxygen content is 20% of the above compound by weight?
	(A) 16 (B) 32 (C) 8 (D) 64

PHYSICS

(Bengali Version)

- 15 সেমি ব্যাসার্ধবিশিষ্ট একটি বিকার 0.075 নিউটন/মি পৃষ্ঠটান বিশিষ্ট তরল দ্বারা পূর্ণ করা হল। তরলপৃষ্ঠে কোন কল্পিত ব্যাসের দুদিকে মোট পৃষ্ঠটান হবে
 - (A) 0.075 N
- (B) $1.5 \times 10^{-2} \text{ N}$
- (C) .225 N
- (D) 2.25×10^{-2} N
- পরস্পর সংলগ্ন দুটি স্প্রিং এর সাথে $16~{
 m Kg}$ ভর যুক্ত করে একটি দৃঢ় অবলম্বনের সাথে লম্বালম্বিভাবে ঝোলানো আছে। স্প্রিং ধ্রুবক যথাক্রমে ${
 m K}_1$ ও ${
 m K}_2$; সমগ্র বস্তুটির উল্লম্ব কম্পনের পর্যায়কাল হবে
 - (A) $\frac{1}{8\pi}\sqrt{K_1 + K_2}$ (B) $8\pi\sqrt{\frac{K_1 + K_2}{K_1 K_2}}$ (C) $\frac{\pi}{2}\sqrt{K_1 K_2}$ (D) $\frac{\pi}{2}\sqrt{\frac{K_1}{K_2}}$

- একটি প্রগামী তরঙ্গের সমীকরণ $Y=15 \sin{(660 \pi t-0.02 \pi x)}$ সেমি হলে তরঙ্গের কম্পাংক
 - (A) 330 হার্টজ
- (B) 342 হার্টজ
- (C) 365 হার্টজ
- (D) 660 হার্টজ
- 4. একটি দুমুখ খোলা নলের বায়ুতে কম্পাংক ি। চোঙ্গটিকে খাড়াভাবে অর্ধেকটা জলে নিমজ্জিত করলে ওর মূল
 - (A) f
- (B) 2f

- দৃটি টানকরা তারের একটি দৈর্ঘ্য 'l' এবং অপরটির '2l' এবং একটির টান 'T' এবং অপরটির '4T'। যদি তার দুটি একই পদার্থ দিয়ে তৈরী হয় তবে তাদের কম্পাংকের অনুপাত হবে
 - (A) 2:1
- (B) 1:2
- (C) 1:1
- (D) 1:4
- 200 মি/সেকেন্ড বেগে অণুভূমিক তলে উড়ন্ত বিমানে শব্দ করার 10√5 সেকেন্ড পরে তার প্রতিধ্বনি শোনা যায়। বায়ুতে শব্দের বেগ 300 মি/সেকেন্ড হলে বিমানের উচ্চতা হবে
 - (A) 250 위
- (B) 250 √5 国
- (C) 1250 মি
- (D) 2500 国
- 7. দুইটি সুরশলাকা যাদের কম্পাংক n, এবং n, সেকেন্ডে n সংখ্যক স্বরকম্পের সৃষ্টি করে। যদি n, এবং n এর মান জানা থাকে তবে n, এর মান হবে।
 - (A) $\frac{n_2}{n} + n_2$

- (C) $n_2 \pm n$ (D) $\frac{n_2}{n} n_2$
- 36 কিমি/ঘন্টা বেগে গতিশীল একটি গাড়ী 500 হার্টর্জ কম্পাংকের একটি সাইরেনকে অতিক্রম করে। সাইরেন অতিক্রম করার পর গাড়ীর আরোহীর কাছে সাইরেনের আপাত কম্পাংকের মান
 - (A) 520 হার্টজ
- (B) 485 হার্টজ
- (C) 540 হার্টজ
- (D) 460 হাৰ্টজ
- 9. 6 টি অণুর দ্রুতি যথাক্রমে 2 একক, 5 একক, 3 একক, 6 একক, 3 একক ও 5 একক। তাদের গড় বর্গীয় বেগ হল
 - (A) 4.0 একক
- (B) 1.7 একক
- (C) 4.2 একক
- 10. কোন চিত্রটি জলের উষ্ণতার উপর নির্ভরতা সঠিক ভাবে প্রকাশ করছে?

Π_{z}	 1.2 m লম্বা বন্দুকের নল মোটামুটি কতটা সময় কাটিং 	থেকে বুলে ট বের হল 64	10 ms সাততে। স্থ	खुत्रण वत्रत्म, पूर्णणण रागूरमञ्ज गरण	
	(A) 4 ms	(B) 40 ms	(C) 400 µs	(D) 1 s	2 100 10
	2.224	CC=	্ৰুল ১০ ডিটাৰ চৰক্ৰ ম ৰ্	तेल फिल्म (ग्राभारत s = 1 1 ² औ उल	
12,	একটি নিদিস্টি বল দারা 3 K	(g ভর বিশিষ্ট বস্তুকে। সে	কভে ও । মতার দূরতথ বা	রিয়ে দিলে, যেখানে $s = \frac{1}{3} t^2$, ঐ বল	100
	কর্তৃক 2 সেকেন্ডে কৃতকার্য		5	3	
	(A) $\frac{8}{3}$ J	(B) $\frac{19}{5}$ J	(C) $\frac{5}{19}$ J	(D) $\frac{3}{8}$ J	
13,	ফোটন শোষণ করল। উত্তে	নন বিভব – 13.6 eV । এই হজিত অবস্থা থেকে নিচে ?	পরমাণুর নিম্নতম অবস্থার দংক্রমিত হতে গেলে কত	্য একটি ইলেকট্রন 12.75 eV র একটি চুবিভিন্ন প্রকারের রেখা বর্ণালি পাওয়া	- Steen
	(/		(C) 2	(D) 6	
14.	জলের উষ্ণতা বৃদ্ধিতে জন্ম	ন ভাসমান এক টুকরা কাঠে	র আপাত ভার		
TAF	(A) বদ্ধি পাবে		(B) হ্রাস পাবে		
	(C) বৃদ্ধি অথবা হ্রাসপেতে	ত পারে	(D) একই থাকবে		
15.	ওই জলকে সম্পূর্ণরূপে ব	রর সাহায্যে কিছু পরিমাণ বাষ্পীভূত করতে আরও 5	জলকে 0°C থেকে 100° 5 মিনিট সময় লাগে। বা	C তাপমাত্রায় তুলতে 10 মিনিট এবং ষ্পীয় ভবনের লীন তাপ হিসেব করে	
	পাওয়া যায় (A) 530 ক্যালরী/গ্রাম	(B) 540 ক্যালরী/গ্রাম		(D) 560 ক্যালরী/গ্রাম	
16.	নীচের পদার্থগুলির কোনা	টর স্থিতিস্থাপকতা সর্ব্বোচ্চ			
100	(A) ইস্পাত	(B) তামা	(C) রাবার	(D) % %	
17:	বলপ্রয়োগে একটি তার টা	নটান অবস্থায় আছে। তারটি	হঠাৎ ছিড়ে গেলে তার ত	চাপমাত্রা	
	(A) অপরিবর্তিত থাকবে	11	(B) কমবে।		
	(C) বাড়বে।		(D) প্রথমে কমবে ও	তারপর বাড়বে।	
18.	দ্যুবের ভাপুমারা শিশিবাংর	কর সমান হলে আপেক্ষিক	আর্দ্রতার মান হবে		
10.	(A) 100%	(B) Zero%	(C) 70%	(D) 85%	
19-	কোন তাপমাত্রায় বায়ুর অ	াণুর গড় বর্গীয়বেগের বর্গমূ	লের মান প্রমাণ চাপ ও তা	পমাত্রার বেগের দ্বিগুণ হবে?	
.,,	(A) 519°C	(B) 619°C	(C) 719°C	(D) 819°C	
20	ৰামৰ মাজেলে কাঁ/চৰ ও	কোয়ার্জের প্রতিস্বাংক যথ	গ্রক্তমে 3/2 ও 12/5 কাঁচে	র সাপেক্ষে কোয়ার্জের প্রতিসরাংক হল	460 000
20.	$(A) \frac{8}{5}$	(B) $\frac{5}{8}$	(C) $\frac{5}{18}$	(D) $\frac{18}{5}$	Chron
21.	একটি অবতল দর্পণের বর	ক্রতা ব্যাসার্ধ 24 সেমি এবং	প্রতিবিশ্বের আকার বস্তুর	আকারের 1.5 গুণ। তাহলে বস্তু দূরত্ব	
41.	হল				
	(A) 20 সেমি	(B) 8 সেমি	(C) 16 সেমি	(D) 24 সেমি	
22.	ভেতৰ থেকে আলো নিগ	তি হবে তার ব্যাসার্ধ,		ত। জ্বলের উপরতলের যে বৃত্তের	
	(A) $\frac{3}{\sqrt{7}}$ h	(B) $\frac{\sqrt{7}}{3}$ h	(C) $\frac{\sqrt{3}}{7}$ h	(D) $\frac{7}{\sqrt{3}}$ h	
23.	'+q' আধানযুক্ত চারটি বি গঠন করে। বৃত্তের কেন্দ্রে	ন্দু একটি 2d ব্যাসের বৃত্তের দ্র বিভবের মান	। পরিধির উপর এমনভাবে	রাখা আছে যে বিন্দুগুলি একটি বর্গক্ষেত্র	

(D) $\frac{q}{4d}$

(C) $\frac{4d}{q}$

(A) 0

24	4 /4/	গরকত্ব বিশিষ্ট 64 টি গোলৰ				
ľ	(A) 64q, C	(B) 16q, 4C	(C) 64q, 4	C (D) 16q, 64	C	
25		বশ সংক্রান্ত লেজের সূত্র ে নর নিত্যতা সূত্র চা সূত্র তাত্যতা সূত্র বেগের নিত্যতা সূত্র।				
26	. কোনটি সঠিক					
	 (A) একটি সৃস্থিত (B) একটি সৃস্থিত (C) নিউক্লীয় সংগ্ৰ 	নিউক্লিয়াসের বিরাম ভর নি নিউক্লিয়াসের বিরাম ভর বি বাজনে দুটি মাঝারি ভরের (জনে একটি খুব হালকা নিউ	উট্রিয়নগুলির বিরাম ভর্ জিয় নিউক্রিয়নগুলির বি	গুণলির সমষ্টির থেকে কম রাম ভরগুলির সমষ্টির থে	l.	
27.	একটি সিলিকন ও এ বড় হয়। দুটি ভারোর (A) জার্মেনিয়ামে বি	কটি জার্মেনিয়াম ডায়োডের ভেই সমান পশ্চাৎমুখী বায়া বিপরীত ডডিং প্রয়ায়ের মা	েতি মাত্রাগুলি সমান। সন্মো হয়েছে।	। সি লিকনে নি ষিদ্ধ অঞ্চল ভ		
	(C) দটি ভায়োভে	বিপরীত জাতির প্রসালের ত	हिनासान अरुगका (वन			
	(D) नृष्टि ভारसार्छङ	বিপরীত তড়িৎ প্রবাহের হ	াঞ্জি আপেক্ষিক মান বে	চবল বর্ণিত তথ্য থেকে নি	র্ণয করা সম্ভৱ এস ।	
28.	4Ω রোধ বিশিষ্ট এক (A) 4Ω	াট তরিকে বাঁকিয়ে একটি ব	ত্তের আকার দেওয়া হল (C) 1Ω	। যে কোন ব্যাসের দুই প্রা	ন্তে রোধ হবে	
29.	E তড়িৎচালক বল ও হস্তান্তরের শর্ত হল	'r' অভ্যস্তরীণ রোধ বিশিষ্ট	একটি ব্যাটারীকে 'R' রে	রাধের সাথে যুক্ত করা হল	। সূৰ্বাধিক ক্ষমতা	
	(A) r < R	(B) r > R	(C) $r = \frac{1}{R}$	(D) $r = R$		
	(A) 19	থের তুল্য দশমিক মান (B) 31	(C) 23	(D) 22		
	(13)	ি ভেররটি x-অফের সাথে (B) $\sin^{-1}\left(\frac{4}{13}\right)$	যে কোণে নত থাকে তা	র মান হল		
	(13)	(D) Cos (13)				
		তিবেগ 'v' কে v = at + b (B) LT ⁻¹	(C) LI	(D) LT = =		
. (একটি সরলরেখা বরাবর করা যায়, বস্তুর প্রাথমিক	া গতিশীল কোন বস্তু কর্তৃক গতিবেগ হল	ত্তিক্রান্ত দুরত্ব । সময়ে	য় S = 3 – 4t + 5t ² , সমী	করণ দ্বারা প্রকাশ	
	(A) 3 একক	(B) −3 একক	(C) 4 একক	(D) <i>–</i> 4 একক		
1 2	l গ্রাম ভরের একটি বস্তু হলে উহার অপকেন্দ্র বর	পিণ্ড 1.0 রেডিয়ান/সেকেং ন হবে	⁵ কৌণিক বেগে । মিটা	র ব্যাসার্ধের বৃত্তের পরিধি	বরাবর গতিশীল	
(,	A) 0.1 ডাইন	(B) 1 ডাইন	(C) 10 ডাইন	(D) 100 ডাইন	E.	
() ()	.5 গ্রাম এবং 2.5 গ্রাম র থকে x দূরত্বে অবস্থিত : A) 10 সেমি	ভরযুক্ত দুইটি ক্ষুদ্র বস্তুর পা হলে x এর মান		এবং ওদের ভরকেন্দ্র 1.5	গ্রাম বিশিষ্ট বস্তু	
1,2	,	(B) 6 সেমি	(C) 13 সেমি	(D) 3 সেমি		
			10			

36. পৃথিবীর ভর অপরিবর্তিত রেখে এমনভাবে সম্কৃচিত হল যে ওর ব্যাসার্ধ 1/4 অংশ হয়ে গেল। তবে একটি পুরো

	দিনের জন্য সময় লাগবে (A) 96 ঘন্টা	(B)	48 ঘন্টা	(C) 6 ঘন্টা	(D) 1.5 ঘন্টা		
	` ,						
37.				একটি গোলা বিস্ফোরণের থাকে তবে দ্বিতীয় খন্ডের		9 কিগ্ৰা ও 1 কিগ্ৰা	
	(A) 1 মি/সে			(C) 100 মি/সে		দ	
38.	। কিগ্রা ভরের একটি বস্তু	কে অম	সৃণ তলে স্থিরাবস্থা	থেকে সচল করতে তলের	সমান্তরাল যে বল	প্রয়োগ করতে হবে	
	তা হল (µ = 0.1 এবং g				- 10 -55		
	(A) 0.98 নিউটন	(B)	0.49 14604	(C) 9.8 নিউটন	(D) 4.9 INGUN	ш	
39.	100 কিগ্রা ভরের এক				া। যদি বহিৰ্গত গ্য	াসের গতিবেগ 1	
	কিমি/সেকেন্ড হয় তবে র (A) 1000 মি/সে ²			ব। (C) 10 মি/সে ²	നു 1 ചി/ദ്ര ²		
40.	ভূপৃষ্ঠে একটি বস্তুর ওজ- ওজন হবে	12.6	নিউটন। যদি বস্তুটি	কে পৃথিবীর ব্যাসার্ধের অ	ধেক উচ্চতায় ওঠানে	না হয় তবে বস্তুটির	
	(A) 2.8 নিউটন	(B)	5.6 নিউটন	(C) 12.6 নিউটন	(D) 25.2 নিউট	न	
				MISTRY			
			(Bengal	i Version)			
41,00	2N HCl এর সমান আণ	ব গাঢ়ত্ব	হবে			diam'r.	
	(A) $4.0 \text{ N H}_2\text{SO}_4$	(B)	0.5 N H ₂ SO ₄	(C) 1.0 N H ₂ SO ₄	(D) 2.0 N H_2	SO₄	
42.	1 মোল মিথাইল অ্যামিনে						
	(A) 1.0 লিটার নাইট্রোর(C) 11.2 লিটার নাইট্রে			(B) 22.4 লিটার নাই(D) 5.6 লিটার নাই	ট্রোজেন টাজেন		
					Alcai-i		
43	0.1 M আমেটিক আসি	ডে সো	ডিয়াম অ্যাসিটেট্ যে	াগ করলে			
	(A) pH বৃদ্ধি পায় (C) pH অপরিবর্তিত থ	াকে		(B) pH হ্রাস পায়(D) pH এর পরিবর্তন	ন অনুমান করা যায় ন	रा ।	
	•						
44.	ইলেকট্রন সজ্জা 1s ² 2s ² (A) ধাতব পরমাণু	2p° 3 (R)	s² 3pº 3dº সাচত অধাতব প্রমাণু	করে একাঢ (C) অধাতব অ্যানায়ন	(D) ধাতব ক্যাটা	राज	
		, ,		(6) 24 110 1 39 1111			
45.	জলের অস্বাভাবিক উচ্চ						
	(A) অন্তরাণবিক হাইড্রে (B) অন্তরাণবিক এবং ত	াজেন ৭ যান্তরাণা	_{থাশ} বৈক উভয় প্রকার হাই	ড্রোজেন বন্ধন			
	(C) আন্তরাণবিক হাইডে	য়াজেন ব					
	(D) উচ্চ আপেক্ষিক ত	19					
46	3A → 2B, বিক্রিয়াটির ই	, হার + -	d(B)" এর সমান হল	And an a			
			dt ,				

(C) f>p>s>d (D) p<d<s<f

47. কোনো প্রদত্ত কক্ষের জন্য আবরণী ক্ষমতার ক্রম হল

(A) f > d > p > s

(B) s>p>d>f

Street or other street.

সম্পূক্ত

48	 কোনও রাসায়নিক বিক্রিয়াতে 'অনুঘটক' বলিতে বৃ (A) যাহা বিক্রিয়ার সাম্যজনিত প্রবককে বর্ধিত কর (B) যাহা উৎপন্ন পদার্থের সাম্যাবস্থায় গাঢ়ত্ব বর্ধি (C) বিক্রিয়ার পথ পরিবর্তন করে না। (D) বিক্রিয়ার সক্রিয়নশক্তির (activation energy) 	রে। ত করে।
49		
	(A) $p = \frac{h}{mv}$ (B) $\lambda = \frac{h}{mv}$	(C) $\lambda = \frac{h}{mp}$ (D) $\lambda m = \frac{v}{p}$
50	O ₂ আয়নের বন্ধনীমাত্রা	
	(A) 2 · (B) 1	(C) 2.5 (D) 1.5
51	1	নত্বের (d) সংগে যেভাবে পরিবর্তিত হয় তা হল
	(A) $\frac{1}{\sqrt{d}}$ (B) d	(C) \sqrt{d} (D) d^2
52	সাধারণ উষ্ণতায় ম্যাগনেসিয়াম হাইডুকসাইডের দ্রাব	ব্যতা গুণফল 1.96×10 ^{–11} ; ম্যাগনেসিয়াম হাইড্রক্সাইডের সম্পৃত
	জলীয় দ্রবণের pH হবে (A) 10.53 (B) 8.47	(C) 6.94 (D) 3.47
53:	এক পৃতায়াংশ করলে বাক্রয়াটির গতি বৃদ্ধি পাবে	টি ঘটছে, সেই পাত্রের আয়তন কমিয়ে তার প্রারম্ভিক আয়তনের (এখানে, g = গ্যাস)
<i>5 4</i>	(-)	(C) 27 행의 (D) 36 행의
54	ানিচের ত্যালকার মধ্যস্থ কোন প্রক্রিয়াটিতে এনট্রপির	পরিবর্তন ধনাত্মক হবে, কোন গণনা না করে সেটি সুচিত কর।
	(A) $H_2(g) + I_2(g) \rightleftharpoons 2HI(g)$	
	(B) $HCl(g) + NH_3(g) \rightleftharpoons NH_4Cl(s)$ (C) $NH_4NO_3(s) = N_2O(g) + 2H_2O(g)$	
	(D) MgO(s) + H ₂ (g) = Mg(s) + H ₂ O(l) (s = কঠিন, l = তরল, g = গ্যাস)	
55.		
JJ.	141	বিক্রয়ার জাতক P হল, (C) ¹⁴¹ Ba (D) ¹⁴¹ Cs
56.	0.01 মোলাল NaCl দ্রবণে জলের হিমান্ক নামে 0.37	7°C: 0 02 মোলাল ইটেবিয়া দ্বাগের কিয়াক কর্মের
	(A) 0.37°C (B) 0.74°C	(C) 0.185°C (D) 0°C
57.	নিম্নলিখিতগুলির মধ্যে কোনটি ওজোনোলিসিস প্রক্রিয় (A) $Me_2C = CHMe$ (C) $MeCH_2 - C(Me) = CMe_2$	য়ায় অ্যালডিহাইড এবং কিটোন উভয়ই দেবে। (B) Me ₂ C = CMe ₂ (D) MeCH(Me) — CH = CHMe
58.	ক্ষারীয় মাধ্যমে ফেনলের বেঞ্জয়লেশনকে বলা হয়	(5) Mechanica — Chi = Chivie
50.	(A) Friedel Craft বিক্রিয়া	(B) Wurtz-Fittig বিক্রিয়া
	(C) Schotten-Baumann বিক্রিয়া	(D) SabatierSandern's বিক্রিয়া
59.	নীচের যৌগগুলির মধ্যে কোনটি পরাকর্ষী সঙ্কলন বিত্রি CH ₃ CHO, PhCOCH ₃ ,	
	(A) (B)	PhCOPh, CH ₃ COCH ₃ (C) (D)
60.	গাঢ় H ₂ SO ₄ সহ অ্যাসিটোন পাতিত করলে দেয়	
	(A) diacetone alcohol (B) mesityl oxide	(C) mesitylene (D) Propene-2-ol

R CH2 CH2 OH কে RCH2 CH2 COOH-এ নিম্নলিখিত ধাপের ক্রমে পরিবর্তন করা যায় ঃ

(A) PBr₃, KCN, H₃O⁺

(B) PBr₃, KCN, H₂/Pt

(C) KCN, H₃O+

(D) HCN, PBr3, H3O+

নীচের বিক্রিয়াজাত মুখ্য পদার্থ 'P' হল

$$CH_3CH = CH_2 \xrightarrow{HI} F$$

(A) CH₃ CH₂ CH₂ I

(B) CH₃ CH—CH₃

(C) CH_2 — $CH = CH_2$

(D) CH₂—CH₂—CH₂

কিটোন থেকে সায়ানোহাইড্রিন তৈরী হওয়াটি একটি উদাহরণ -

- (A) ইলেকট্রন আসক্ত সঙ্কলনের
- (B) পরাকর্ষী প্রতিস্থাপনের

(C) পরাকর্ষী সম্বলনের

(D) ইলেকট্রন আসক্ত প্রতিস্থাপনের

নীচের কোনটি সিস্-ট্রান্স সমাবয়তা দেখায়?

- (A) CH_2Br — CH_2Br (B) CBr_3 — CH_3
- (C) CHBr = CHBr (D) $CBr_2 = CH_2$

65. C4H11N সংকেত বিশিষ্ট কতগুলি প্রাইমারী অ্যামিন হতে পারে?

- (A) 1
- (B) 2
- (C) 3
- (D) 4

CH3-CH = CH-C ≡ CH সংকেত যুক্ত যৌগটির IUPAC অনুসারে নাম হবে

(A) পেন্ট-3-ইন-1-আইন

(B) পেন্ট-3-ইন-4-আইন

(C) পেন্ট-2-ইন-4-আইন

(D) পেন্ট-2-ইন-3--আইন

একটি ট্রাইপেপ্টাইডকে লেখা হল এইভাবে Glycine-Alanine-Glycine। এই ট্রাইপেপটাইডের সঠিক গঠন হল ঃ

- CH,
- 0
- COOH Ö CH.
- CH, CH.

নীচের কোন্টি LiAIH4 দ্বারা বিজারিত করলে একটি মাত্র বিক্রিয়াজাত পদার্থ উৎপন্ন হবে?

(A) CH₃ OCOCH₂ CH₃

(B) CH₃CH₂O COCH₂ CH₃

(C) CH₃CH₂OCOCH₃

(D) CH₃ CH₂O COCH₂ CH₂CH₃

নীচের যৌগজোড়গুলির মধ্যে কোন জোড়টি জলীয় NaHCO3-এর দ্রবণের সাথে বু ঘুদন সৃষ্টি করবে?

- CH₃COCl, 1
- CH₁COCH₃, II
- CH₃COOCH₃, CH₃COOCOCH₃ III

- (A) I এবং II
- (B) । এবং IV
- (C) !! এবং !!!
- (D) I এবং III

70.	নীচের অস্পণ্ডলির মধ্যে কোনটির বিযোজন ধ্রুবক সর্বনি	ो न्न ?	-		10.407	
	(A) CH ₃ CHF. CO ₂ H	(B) FCH ₂ CH ₂ CO ₂	H			
	(C) BrCH ₂ CH ₂ CO ₂ H	(D) CH ₃ CHBr.CO ₂	H		This street	
71.	অ্যামোনিয়াম ডাইক্রোমেটকে উত্তপ্ত করলে নিচের কো	ন জোড়াটি পাওয়া যায় ?		45		
	(A) N ₂ এবং H ₂ O (B) N ₂ O এবং H ₂ O					
	(C) NO ₂ এবং H ₂ O (D) NO এবং NO ₂					
		361-361				
72.	ক্যালসিয়াম প্রস্তুতিতে নিচের কোন পদ্ধতিটি ব্যবহৃত হ	र्य ?				
	(A) কার্বন দারা CaO-এর বিজারণ					
	(B) হাইড্রোজেন দ্বারা CaO-এর বিজ্ঞারণ					
	(C) অনার্দ্র CaCl ₂ এবং KCl-এর মিশ্রণের তড়িৎ বি	ই ন্নে ষণ				
	(D) গলিত Ca(OH) ₂ এর তড়িৎ বিশ্লেষণ					
73.	অ্যাজুরাইট আকরিকের সংযুতি হল					
	(A) CuCO ₃ .CuO	(B) Cu(HCO ₃) ₂ .Cu				
	(C) 2CuCO ₃ .Cu(OH) ₂	(D) CuCO ₃ . 2Cu(O)H) ₂			
74.	অন্নিকৃত সোডিয়াম নাইট্রাইট দ্রবণে KI যোগ করলে					
	(A) NO গ্যাস উদ্ভূত হয় এবং I ₂ মুক্ত হয়					
	(B) N ₂ গ্যাস উদ্ভূত হয় এবং HI উৎপন্ন হয়					
	(C) N O strip there are used I store and					
	(D) N ₂ গ্যাস উদ্ভূত হয় এবং HOI উৎপন্ন হয়					
75.	Al(OH)3 থেকে Fe(OH)3 কে পৃথক করতে যাহা ব	যোগ করতে হবে				
	(시) 시스(1 전혀 (전) 전에 다시 보조하					
	(C) NaOH দ্রবণ (D) NH4Cl এবং NH4	OH এর মিশ্রণ				
76.	নীচের বিবৃতিগুলি থেকে অশুদ্ধটি পছন্দ কর।					
	(A) বায়ু পরিশোধনে ওজোন বীজাণু দূরীকরণের জন্য	ব্যবহাত হয়।				
	(B) ওজোনে অক্সিজেন – অক্সিজেন বন্ধনীদূরত্ব, আণ	বিক অক্সিজেনের মধ্যেকার	ব বন্ধনীদুরত্বের সঙ্গে	ৰ সমান।		
	(C) ওজোন অণুটি গঠনে কৌণিক।					
	(D) ওজোন একটি জারক দ্রব্য।					
77.	নাইট্রেট মূলক সনাক্তকরণে বাদামী জটিল যৌগটি লেখা	া যায় [Fe(H ₂ O) ₅ NO]S	O ₄ হিসাবে। এই জ	টিল যৌগে Fe-		
	এর জারণ সংখ্যা কত ?	(0)				
	(A) +1 (B) +2	(C) +3	(D) 0			
78.		।।। विकासकार्यक सम्बद्ध स्थापनार्थी	da da an a ana			
70.	শেষতার প্রথমের ও সাহাততে Zn এর ধারা NaiNO3 এর শোষণ করে সোডিয়াম নাইট্রেটের ভর হবে।	া বজারণের কলে আনুমোন	ন্য়া ডৎপন্ন হয়। এ	ক মোল হলেকদ্ৰন		
	, ,	(C) 9 000 sn	(D) 0.075 ett			
	(A) 7.750 at . (B) 10.02.3 at .	(C) 8.000 at .	(D) 9.875 레.			
79.	0.01 মোল PbS কে PbSO4 এ রূপান্তরিত করতে প্র	যোজনীয় "10-আয়তন" স	াইসমোসভন পাসভাব	মাউনেক প্রবিসাধ		
	হবে	enternia 10-enaen e	(1403)0001 11300			
	(A) 11.2 মি.লি. (B) 22.4 মি.লি.	(C) 33.6 মিলি	(D) 44 8 知 層			
	The second second					
80.	একটি অজ্ঞাত মৌল একটি অক্সাইড গড়ে। ঐ মৌলের	তুল্যাক্ষভার কি হবে যদি উ	উপরোক্ত যৌগের ফ	गरश 20%		
	পরিমাণ অক্সিজেন থাকে ?		1			
	(A) 16 (B) 32	(C) 8	(D) 64			

